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I. Introduction - History of the Constituent Quark Model 

As I mentioned in my 1978 Banff lectures’ a nonrelativistic 

constituent quark model has been remarkably successful in describing many 

phenomena in hadron physics. 1-7 However there are other areas where the model 

has been spectacularly unsuccessful. a-10 George Zweig used to say that the 

quark model” ,l* gives an excellent description of half the world. 

The model has no sound theoretical basis. In the early days there 

was no clue to the underlying theory. Today we believe that the underlying 

theory is QCD and that hadrons are composed of quarks and gluons. However the 

equations of QCD are so complicated that no one has been able to solve them to 

derive hadron spectroscopy and dynamics. The constituent quark model can now 

be considered as an intermediate phenomenological model which fits the 

experimental data and will hopefully be derived from QCD. 

* 
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Our approach considers the model as a possible bridge between QCD 

and the experimental data and examines its predictions to see where these 

succeed and where they fail. Pinpointing the succes8es and failures may give 

us clues to the connection with the underlying theory. we also attempt to 

improve the model by looking for additional simple assumptions which give 

better fits to the experimental data. But we avoid complicated models with 

too many ad hoc assumptions and too many free parameters; these can fit 

everything but teach us nothing. We also attempt to look beyond the simple ad 

hoc assumptions to see whether QCD gives any indication for a possible 

j"stificatio". 

Everyone has his own version of the quark model. We define our 

constituent quark model by analogy with the constituent electron model of the 

atom and the constituent nucleon model of the nucleus. I" the same way that 

a" atom is assumed to consist only of constituent electrons and a central 

Coulomb field and a nucleus is assumed to consist only of constituent nucleon6 

hadrons are assumed to consist only of their constituent valence quarks with 

no bag, no glue, no ocean, "or other constituents. Although these constituent 

models are oversimplified and neglect other constituents we push them as far 

as we can. Atomic physics has photons and vacuum polarization as well as 

constituent electrons, but the constituent model is adequate for calculating 

most features of the spectrum when finer details like the Lamb shift are 

neglected. Similarly, constituent nucleon models are used extensively in 

nuclear spectroscopy eve" though we know that at some stage the contributions 

of mesons, isobars, exchange currents, etc. must be also taken into account. 

The simple no"relativistic constituent quark model has had 

remarkable success in describing the low-mass spectroscopy of the quark- 

antiquark and three quark systems. 1-7 Most recently it has given excellent 
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descriptions of quarkonium systems like charmonium and the T states. 5,6 

However for detailed properties of multiquark systems the model has failed 

almost completely and given no predictions which have been verified by 

experiment.8-10 In this talk, we shall try to understand how the model can be 

so successful in the quark-antiquark and three quark systems and fail for 

almost everything else. 

We first review the history of the constituent quark model. This 

can be conveniently divided into three stages. 

A. The simple nonrelativistic quark model11112 (no color) was first 

introduced to explain the quantum numbers occurring in the low-lying meson and 

baryon spectrum. This model was then extended to treat all possible 

properties of hadrons by making the simplest dynamical assumptions 

possible.293 Additive single quark operators were used wherever possible to 

describe observable properties of hadrons, including weak,13 

electromagnetic 14,15 and strong1611' interaction matrix elements. Nucleon- 

antinucleon annihilation was described as quark rearrangement. l8 Hadron mass 

splittings were described by a nuclear shell model approach with two-body 

interactions.1g120 The results obtained were in surprising agreement with 

experiment for all of hadron spectroscopy. However, there were several 

outstanding open problems. 

1. The statistics problem. Although quarks were expected to obey 

Fermi statistics, the wave functions required to fit the baryon spectrum were 

symmetric in all the known degrees of freedom rather than antisymmetric. 

2. The saturation problem. r&arks had not been observed and were 

assumed to have a high mass. Mesons and baryons were thus strongly bound 

systems indicating the presence of strong attractive forces both in the quark- 

antiquark and quark-quark systems. There was no explanation for why only 
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quark-antiquark and three quark systems should be strongly bound. This 

psradox is illustrated most dramatically by comparfng the well known deuteron 

stripping reaction with its analog in hadron physics 

d+l? + *+a Cl.=) 

M + B f q + isqn (lb) 
In a collision between a deuteron and a triton, the proton can be 

stripped from the deuteron and combined with the triton to make an alpha 

particle with considerable energy release. Since the nucleorrnucleon force is 

strongly attractive, the proton in the deuteron is much more strongly 

attracted by the three nucleon6 in the triton than by the single neutron in 

the deuteron and the transfer releases energy. In the analogous case of s 

mesorrbaryon collision (lb) one would expect the antiquark in the meson to be 

much more strongly attracted to the three quarks in the baryon than to the 

single quark in the meson. However the antiquark stripping reaction (lb) does 

* 
not occur. 

The stripping reaction (lb) might somehow be ruled out by a general 

principle forbidding production of states having fractional charge. But it 

would not forbid production of multiquark states with integral charges which 

are also not seen. There is no bound state of two pions with charge 2 and a 

mass below two pion masses. Such multiquark states with integral charge and 

baryon number are now called exotics. They might still be found as high mass 

resonances, but there are clearly no stable low-mass bound states. Their 

absence could not be explained in any simple way by the naive constituent 

quark model without the color degree of freedom. If the quark-quark and 

quark-antiquark forces are attractive in all channels as is implied by the 
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existence of meson and baryon bound states with all possible quantum numbers, 

then the four-quark state shown in Fig. 1 should be bound much more strongly 

than two separated quark-antiquark pairs. 

3. The mesowbaryon problem. There was no simple description of 

the forces required to make both mesons and baryons. A vector interaction 

like electrodynamics would give attractive quark-antiquark forces and 

repulsive quark-quark forces and would not bind baryons. A scalar or tensor 

interaction would give attractive and equal quark-quark and quark-antiquark 

forces and lead to a diquark spectrum identical to the meson spectrum. 

Combinations of vector and scalar or tensor interactions to make the quark- 

quark force attractive but weaker than the quark-antiquark forces could 

explain the difference between mesons and baryons. But this seemed contrived 

and not very convincing. 

4. The free quark problem. There was no reasonable explanation for 

the failure to find free quarks. 

The solution of the statistics problem was found " in 1964. The 

additional internal degree of freedom now called color enabled quarks to 

satisfy Fermi statistics with wave functions symmetric in all the previously 

known degrees of freedom and antisymmetric in color. 

In 1968 some simple features of the N+ - limit 22 where N is the 

number of colors were noted as a possible explanation for how hadrons could be 

bound states of quarks but free quarks would not be created in hadrorrhadron 

collisions. If quark-antiquark pairs were bound into mesons by an interaction 

characterized by a coupling constant g, the binding energy of the state we now 

call the color singlet is proportional to Ng2 . Eowever the quark-quark 

scattering cross section and the meson-meson scattering cross section would be 

proportional to g2 withoui the factor N. Thus in the limit where N + m but 
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Ng2 remains finite quark-antiquark pairs would be bound into mesons but the 

mesopmeson scattering cross section which might break the mesons up into 

their constituent quarks would go to zero 'This explanation for the failure to 

find quarks is not considered seriously today. But the simplification of the 

large N limit has been rediscovered in the context of QCD where the decoupling 

of hadrorrhadron interactions in this limit makes it a useful starting point 

for expansions in strong interaction dynamics. 

B. The global color nonrelativistic quark model. The color degree 

of freedom was explicitly introduced into phenomenological dynamical quark 

models in 1973 to solve the saturation end meson-baryon problems. 23 The use 

of a nonabelian gauge theory with confinement had not yet proposed. At the 

1972 Batavia conference, Murray Gell-Mann in his summary 24 presented a strong 

case for the color degree of freedom based primarily on the electromagnetic 

end weak interactions and suggested that some kind of vector gluons were 

responsible for the strong interactions. Bowever there was no suggestion that 

the gluons were colored or that the color degree of freedom was in any way 

essential for the strong interactions. There was no hint of asymptotic 

freedom, infre-red slavery of nonabelian gauge theories with confinement. 

The global color mode123 considered a two-body interaction which 

would be produced by the exchange of an octet of colored massive vector 

bosons.25 The bosons like the quarks would have to be massive to explain the 

failure to observe them experimentally. Confinement was not understood et 

that time end the only mechanism to explain the failure to observe such 

particles was by giving them e high mass. The colorexchange Yukawa 

interaction solved the saturation and meson-baryon problems. The quark- 

antiquark and three quark systems behaved like neutral atoms, there were no 

strongly bound exotics end the quark-quark interaction was exactly half of the 

quark-antiquark interaction 
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V(qq) = ‘2 V(q3 

This is exactly the relation required to bind both mesons and baryons. 

In a model where quarks were very massive and hadrons had a very low 

mess on the quark mass scale, the expression (2) could explain the existence 

of mesons and baryons by setting the strength of the matrix element of the 

interaction (2) to be approximately equal to the quark mass. Then 

(v(qq)> - '2 <v(q:)> a -Mq 

<v(q<)> * -2Mq 

3 <v(qq)> * -3Mq (3c) 

where Mq is the quark mass. The interaction between the two quarks in a 

diquark thus cancels only one quark mass of the two body system and leaves the 

diquark with essentially the same high mass as the quark. The quark-antiquark 

interaction which cancels two quark messes leaves mesons down et low mass and 

the three quark-quark interactions in a baryon cancels the three quark messes 

to give low-lying baryons. Wwever there was still no justification for a 

nonrelativistic picture nor for the use of the interacti& (2) which comes 

from one gluon exchange in e strong interaction model where multiple gluon 

exchanges are not easily neglected. 

The model gave no strongly bound exotic state. With potentials 

having e reasonable spatial variation, there was no possibility of getting a 

lower energy than that of two spatially separated mesons. The two-body 
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interactions are attractive and described by the expressions (2) and (3) only 

in for the color singlet quarlcantiquark configuration found in mesons and the 

color antitriplet quark-quark configuration found in baryons. The 

interactions in the quark-antiquark color octet configuration and in the 

quark-quark color sextet configuration are both repulsive. These repulsive 

channels play no role in meson and baryon states but are responsible for the 

saturation in the multiquark states. The attractions and repulsions cancel in 

calculating the force between a color singlet hadron and an external quark in 

the same way that the Coulomb attractions and repulsions cancel in the force 

from a neutral atom on an external charged particle. 

C. The QCD motivated nonrelativistic quark model. After the 

introduction of asymptotic freedom and confinement in nonabelian gauge 

theories led to the development of QCD,4*26 De Rujula, Georgi and Qashow 27 

introduced ideas from QCD into the nonrelativistic quark model. m=Y 

attributed the spin dependence of the two-body interaction to the spin 

dependent part of a one gluon exchange interaction. This explained for the 

first time the sign of the hyperfine splittings; e.g. why the A is heavier 

than the nucleon, and related the magnitudes of the hyperfine splittings to 

the quark masses. With this model it was possible to obtain two independent 

relations between the strange and nonstrange quarkmasses in terms of 

experimental hadron masses 27,28 and to use them to predict the A magnetic 

moment.1,27,29 Roth of these predictions agreed exactly with one another and 

with the experimental value of the A moment. The original prediction by DGG 

in 1975 is particularly impressive because it was made before the magnetic 

moment had been measured precisely. 

In the multiquark sector, this model gave complete nonsense. The 

saturation feature of the global color model remained. Forces between color 
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singlet hadrons were much weaker than those that bind the quarks into 

hadrons. But the introduction of confining potentials led to unphysical long 

range forces whfch were in disagreement with experiment 8-1o and rapidly 

changing color3' correlations between spatially separated systems which 

violated causality. Multiquark baryonium states were predicted and not found 

experimentally but created considerable confusion as one candidate after 

another was shown to be only a statistical fluctuation. 31 

The situation can be summed up by saying that the nonrelativistic 

constituent quark model with input from QCD gives a very good phenomenological 

description of the quark-antiquark and three quark systems but breaks down in 

the multiquark sector. Arguments explaining this breakdown are presented 

below in Section IV. 

In Section II we examine the possible basis from QCD of one 

application of the simple additive quark model with single-quark operators, 

the calculation of hadron total cross sections. In Section III we look beyond 

the approximation of single quark operators for phenomenological contributions 

from two-quark operators in total cross sections and magnetic moments. In 

Section IV we analyze the difference between the quark-antiquark and three 

quark systems where the model succeeds and the multiquark systems where the 

model fails and show how gluon dynamics can make the difference. Somehow it 

is possible to replace the gluon field by an effective interaction in the 

quark-antiquark and three quark systems. But the gluon dynamics plays an 

essential role in the multiquark system and the constituent quark picture is 

no longer adequate. 

II. Why are Total Cross Sections Additive? 
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The additive quark model (AQM) for high energy scattering I7 has been 

remarkably successful in fitting and predicting experimental data, despite the 

absence of a satisfactory QCD derivation. It was first introduced on the 

basis of an impulse approximation as shown in Fig. 2. This ad hoc assumption 

was never justified but accepted as reasonable. However it appeared to be 

completely wrong after the advent of QCD. Single gluon exchange between 

separated color-singlet hadrons cannot occur. Two-gluon exchange shown in 

Figs. 3a and 3b is a two-quark operator which violates the impulse 

approximation of the AQM when the two gluons are emitted by two different 

quarks in the same hadron as in Fig. 3b. A twwgluon exchange model for the 

pomeron contribution to scattering proposed independently by Nussinov 32 and 

LO"33 explained some dynamic features, but did not relate meson and baryon 

couplings in a simple way. However it turns out that the combinatorial 

factors In two-gluon and threegluon exchange vertices do indeed satisfy the 

additivity assumption of the AQM in lowest order, even though there is no 

impulse approximation and two-quark and threequark operators play an 

important role.34,35 The color algebra allows the multiquark operators to be 

reduced to single quark operators and gives the simple quark-counting rules 

relating meson and baryon couplings. The problems never solved in the 

original impulse approximation approach remain; e.g. ignoring the differences 

between mesons and baryons in form factors, masses and momentum fractions 

carried by an active quark. However the additional difficulty of obviously 

wrong combinatorial factors arising from two-quark and three-quark operators 

is resolved. 

The quark counting factor was first noted by Gunion and Soper. 34 We 

follow the general algebraic derivation of Ref. 35 which obtains the result 

explicitly from the color algebra of the vertices describing gluon emission 
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from color singlet hadrons shown in Figs. 4a and 4b. These vertices have a 

very simple color structure because of the factorization of the color degree 

of freedom which allows all color factors to be expressed in terms of 

generators of the SU(3) color group. 

The emission of a gluon by a single quark is described in the quark 

space by the matrix element of a color octet operator between two color 

triplet states. By the WignerEckart theorem, thfs matrix element factorizes 

into the product of a reduced matrix element of a color-independent operator 

and an SU(3) Clebscb-Gordan coefficient which is the same for any color octet 

operator and is therefore proportional to the matrix element of the 

corresponding generator of SU(3) color. Thus wee can write 

<(G=)q;(Vlq,> = <q;“AiI’qi> <q;/F;lqi> 

where Ff denotes the eight SU(3) color generators for the ith quark of 

antiquark and ais a color index, Ga denotes a gluon with the color quantum 

number 5, qi and qi denote any two states of the I-th quark or antiquark and 

the double-barred reduced matrix element of the color-independent operator Al 

describes all the other degrees of freedom except color. The generator FT is 

identical to the Xa matrix 4,8,26,36 for quark states. For antiquarks 

F= = (-a=)*. 

Color factorization also occurs in the meson and baryon wave 

functions with a color-independent factor in the baryon wave function totally 

symmetric under permutations of the quarks. The reduced matrix elements of 

products of two color-independent single quark operators Al and Bj are thus 

independent of the quark indices I and 1. 
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where Ml and M2 are independent of the indices Aand J The matrix element 

(4b) has the value either Ml or M2 depending only upon whether Land Lare the 

same or different, but not on their explicit values. 

Consider the vertex <(GG)BlVliU d escribing the emission from a color 

singlet hadron H of two gluons in an overall color singlet state. Two types 

of contributions arise. The gluons can be emitted either by the same quark in 

the hadron H as in Fig. 4a or by two different quarks as in Fig. 4b. 

<(GG)HIVIH> =; {fl ; <H(F;<+ + f2 & ; <HIF;F;jH>j . 

(5) 

The coefficients fl and f2 denote all the additional dynamical and kinematic 

factors which do not depend upon the color degree of freedom obtained by 

evaluating matrix elements of color-independent operators. 

The second term on the right hand side of eq. (5) is manifestly non- 

additive and depends quadratically on the quark number. However, a hidden z 

dependence in the color coupling factors exactly cancels the non-additive 

combinatorial factor to give an overall result proportional to the quark 

number. This can be shown by using the following identities for color 

couplings with any color singlet quark-antiquark or three-quark hadron IH>. 

z, FYH> - O (6=) 

1 F=F=lH> - clH> 
a Ii 

(6b) 
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where c is the eigenvalue of the quadratic Casimfr operator for SU(3) color 

for a single quark state and nH is the number of constituents in hadron a; 

i.e. nH = 2 for mesons and 3 for baryons. We first rewrite eq. (5) as 

<(GG)H[v~H> = 1 (fl-f2) i <HIFTFyIH> + f2! i <UIFTF:(U>). 
a 

(7) 

The two-body terms in eq. (7) can be seen to vanish by the identity 

(6a) that the sum of any SU(3) color generator F: over all quarks is a 

generator of the total SU(3) color group which annihilates any color singlet 

state. The remaining term is evaluated with the identity (bb). Thus 

<(GG)H/VIH> = 1 (fl-f2) 1 <HIF~FTIH) - (f -f )n c 12H . (8) 
a 1 

This result (8) shows that the two-gluon emission vertex for any 

hadron H are proportional to the quark number nH. A similar result was 

obtained for the threegluon vertex. Any model for Pomeron exchange such as 

that of Ref. 2 in which the coupling of the Pomeron to the hadron Eis via two 

or three gluons will thus give the AQM ratio of 312 for baryons to mesons for 

the imaginary part of the forward scattering amplitude and the total cross 

section. This includes not only the contributions from the simple gluon- 

exchange diagrams but also from more complicated ladder exchanges which couple 

to the external hadrons via a two-gluon or threegluon vertex. 

The inclusion of four-gluon exchanges breaks the additive quark 

model. That additivity cannot be saved by manipulation of color factors is 

easily seen in the example of one possible four-gluon diagram with two gluons 

coupled to a color singlet and coupled to a single quark and the reamining two 
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gluons coupled to any two quarks and coupled to a color singlet as in the two 

gluon vertex (5). This contribution then factorizes into two two-gluon 

vertices, one behaving like the first term on the right hand side of eq. (5) 

and the second like the entire right hand side. The result is a quadratic 

function of quark numbers. 

III. Beyond the Additive Quark Model 

The assumption that all possible processes are described by single- 

quark operators must break down at some level. The question arises whether it 

makes sense at all to attempt to describe higher order effects by two-quark 

operators, or whether the whole model should be discarded at the 15X level 

where additivity breaks down. This question was investigated37 in 1974 with 

the aim of looking for some signal in the discrepancies at the 10X level 

between AQM predictions and experimental data on total cross sections which 

were sufficiently precise to look at 1% physics. Since Regge exchange was the 

popular mechanism for high energy scattering at that time, the dominant 

mechanism described by a flavor-dependent two-quark operator was s double 

exchange involving a pomeron exchange and an exchange of the f-meson Regge 

trajectory. The simplest test of this model gave new relations between hadron 

total cross sections which were in remarkable agreement with experiment. The 

situation was characterized by the following remark by one of my colleagues: 

"I do not believe a word of this crazy model. But the numbers are 

impressive. You must find a better explanation." For eight years a better 

explanation has been sought but not found. Instead all that has been found 

are more and more impressive numbers, showing agreement with new data on 

hadron nucleon total cross sections at higher energies and new channels and on 
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real parts of forward amplitudes with the simple predictions of this “two- 

component Pomeron model” which adds a second component described by a two-body 

operator to the simple quark-counting first component. 37 

The basic fearure of the data described by this model is the 

simultaneously breaking of quark model additivity and SU(3) symmetry. These 

two effects are then seen to be empirically related and both described by a 

single mechanism. The additive component of the total cross section due to 

Pomeron exchange was assumed to be universal and a pure SU(3) singlet with no 

symmetry breaking. All the strangeness dependence of the Pomeron component as 

well as the mesowbaryon difference came from a single non-additive second 

component which enhanced contributions from nonstrange quarks by an amount 

depending upon the total number of quarks in the hadron. The SU(3) breaking 

appeared as an enhancement of the contribution from the nonstrange quarks, 

rather than as a suppressslon of the contribution of the strange quarks. 

The most recent success of this model is in the hyperou%ucleon 

cross sections38 which had not been measured when the model was first 

proposed. In the AQM this dependence is universal in mesons and baryons and 

attributed to the difference at the quark level between the scattering 

amplitudes of the strange and nonstrange quarks. The difference between 

a(ZN), o(ZN) and o(NN) must then be equal to the difference between 

o(KN) and G(~N).~’ 

o(pp) - o(Zp) = LJ(Zp) - u(Ep) _ o(n-p) _ o(K-p)* (9a) 

The two-component pomeron model, on the other hand, attributes the strangeness 

dependence to a second order effect which is a quadratic function of the quark 

numbers, rather than a linear function. The change in total cross section 
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when a nonstrange quark is replaced by a strange quark is larger in baryons 

than in mesons by a factor of 3/2.4°,41 

O(PP) - o@p) - o(Zp) - o(Sp) - (3/2)(o(v-p) -o(Kep)j. (Vb) 

This difference by a factor of 3/2 between the predictions (9a) and (9b) of 

the AQM and of the two-component pomeron model has now been tested 

experimentally. he prediction (9b) from the twecomponent pomeron model 

agrees with experiment. 

The general approach of this two-component pomeron model pinpoints 

certain features of the experimental data which have a simple physical 

interpretation. This is most clearly demonstrated by inverting the relations 

between hadron nucleon and quark nucleon amplitudes and obtaining the 

contributions of strange and nonstrange quarks to the experimental baryon- 

nucleon and meson-nucleon cross sections. 

OWB = (U~)(~(PP) + o(en)} (IO=) 

UmoM - (1/4)(o(n-p)--~(K-p)~(~1'p)~((Kn)~(K~p)~(K'n)} (lob) 

o(*WB = (1/6)Io(Z-p)+o(~-n)+o(~-p)~~-n)a(pp)-a(pn)) (1Oc) 

0 (*NM = (1/4){o(K-p)~((n-p)+a(K-o)~(n+p)~(K+p)~(K'n)} (lod) 

where o(nN)g, Us, o(sN)g and ~(sN)~ denote the contributions from 

nonstrange and strange quarks to the isospin averaged baryonaucleon and 

mesownucleon scattering cross sections respectively as calculated from the 
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AQM and the conventional duality assumption of equality of the contributions 

from strange quarks and antiquarks is used to eliminate antiquark 

contributions from eqs. (lob) and (1Od). 

o(si-0, - o(iN), (lo=) 

The AQM predicts the equality of the corresponding quark-nucleon 

contributions to baryon and meson cross sections. Substituting the relations 

(10) gives two sum rules which can be tested against experimental data: 

The nonstrange sum rule, 

o(d)8 = Ok (lla) 

(1/6)Io(pp)+o(pn)} = 

f (1/4){o(n-p)-rr(K-p)+o(n+p)-o(K-n)+o(K+p)~(K+n)) (lib) 

12.9 f 0.01 mb. = 11.2 t 0.05 mb. (llc) 

and the strange sum rule, 

d*Nfg = o(sN) M (12a) 

7.7 f 0.1 mb. = 7.75 f 0.05 mb. (12c) 
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The experimental data quoted are taken at 100 Gev/c momentum, where there are 

both new data on hyperopnucleon cross sections and previous data on the other 

hadronic cross sections available. 

The strange sum rule (12) is seen to be in excellent agreement with 

experiment, while there is strong disagreement with the nonstrange sum rule 

(11). The 152 discrepancy is significant and shows that the contribution from 

strange quarks to the hadron-nucleon cross sections is the same in mesons and 

baryons but that the contribution from nonstrange quarks is greater in baryons 

than in mesons. This indication that strange quark conttiutions are somehow 

simpler than nonstrange contributions is a significant and recurrent featute 

of the data which has no explanation from first principles. The model also 

relates the SU(3) symmetry breaking which produces the difference between the 

strange and nonstrange contributions (11) and (12) to the breaking of 

aditivity in the sum rule (11). The assumption that single two-quark 

mechanism explains both effects gives a new relation between these quantities 

o(nMB - a(*W8 - (3/2)(o(nNjM - o(sN)J (134 

(1/3)(o(pp) + o(pn)> - (1/6)10(X-p) + a@-n) + o(Z-p) + u(Z-3 = 

= (3/4)(o(a-p)-o(K-p)~((,+p)~(K-n)) (13b) 

5.15 YL 0.07 mb. - 5.2 + 0.1 mb. (13c) 

Here the SU(3) symmetry breakings in the baryon and meson sectors 

are compared and shown to be related in the exact number predicted by the two- 

component pomeron model. This prediction has now been strikingly confirmed by 

the new hyperon-nucleon data. It is just the factor 3/2 appearing in eqs. 

(Da) and (9b) that makes the difference between the two predictions (9a) and 



19 

(9b). The analogous sum rule from the AQM differs from (6a) by not having the 

factor of 312 on the right hand side. The value of 3.46 f 0.08 mb. obtained 

without the factor 3/2 is in strong disagreement with the value 5.15 f 0.07 

mb. on the left hand side. 

The two-component pomeron model was extremely successful in fitting 

data available at the time and has successfully predicted a large quantity of 

data from subsequent experiments. The striking agreement between prediction 

and experiment shown in eqs. (12-13) is particularly impressive since no data 

was available at this energy and no hyperolrnucleon cross sections had been 

measured at all when the model was fitst proposed. The success of these sum 

rules seems to indicate that the breaking of SU(3) and additivity are 

mysteriously related and that the corrections to the simple SU(3)-symmetric 

AQM affect only the contributions of the nonstrange quarks. 

The model has no convincing derivation from first principles. The 

original double exchange picture fails to explain the observed energy 

dependence, which differs from predictions from pomeron-f double exchange. 

The success of the sum rules has motivated a search for an alternative 

mechanism to give a contribution with same dependence on quantum numbers as 

pomerorr-f exchange but a different energy dependence. So far this search has 

been unsuccessful. 

At this point one might look for further clues in other properties 

of hadrons where the AQM breaks down. Baryon magnetic moments have been 

treated with an additive quark model where N(3) breaking is introduced by 

suppression the additive contribution of the strange quarks. 14,42 However, it 

now appears that additivity fs also broken. 43 It may be that here also the 

N(3) breaking mechanism is better described as a non-additive enhancement of 

the nonstrange quark contribution, rather than a suppression of the additive 
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strange quark contribution. We therefore examine the present status of baryon 

magnetic moments from this point of view. 
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The essential details of the problem are shown in Table 1. 

TABLE I 

Theoretical and bperimental Values of Baryon Magnetic Moments 

Baryon 

proton 

neutron 

A 

2+ 

E- 

2- 

zo 

R(p,z+,E-) 

R(Z ,A) 

R'(2.A) 

R"(2 ,A) 

SW31 
symmetric 
Model 

1.83 

-1.22 

-0.61 

1.83 

-0.61 

-0.61 

-1.22 

0 

1.0 

1.0 

1.0 

2.793 

-1.913 

-0.614f0.005 

2.33,0.13 

-0.89f0.14 

-0.75f0.06 

-1.25&0.014 

2.76f0.85 

1.09*0.03 

1.12*0.02 

1.22*0.1 

Standard Two Cap. 
Broken Broken 
W(3) SU(3) 

2.79 2.75 

-1.86 -1.83 

-0.61 -0.61 

2.67 2.24 

-1.09 -0.81 

-0.50 -0.61 

-1.44 -1.22 

0.38 2.50 

1.06 1.0 

1.0 1.0 

0.82 1.0 

Included in the table are four functions of the magnetic moments 

which project out certain physically interesting features of the data. 

R(p,Z+,Z-) = -3{IJ(p) - II(EC)l/h(~O) - Pt(5-11 (14a) 

R(Z .A) = hG0) + u(:-)I/3P(A) (14b) 

R'(Z ,A) = h(Z") + 21~(2-)1/411(A) (14c) 

R"(Z,A) - u(5-)/v(A) (14d) 
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The expressions (14a) and (14b) were defined in Ref. 43. The expressions 

(14~) and (14d) are modified versions of (8b) which are somewhat more 

sensitive to disagreements wtih the model predictions. 46 

Motivated by the suggestion that the AQM works better for strange 

quarks we begin our analysis from the unorthodox SU(3) symmetry limit in which 

all quarks have the mass of the strange quark and use the A magnetic moment as 

input. The magnetic moment of a baryon with a configuration denoted by 

(1,2;3), where quarks 1 and 2 have the same flavor, is then given in the 

static model with La0 SU(6) wave functions by 

;(1,2;3) a (zql + 2q2 -q3) II(A) - (4ql - q3)u(A), (154 

where; denotes the magnetic moment in the SU(3) limit where all quarks have 

the mass of the strange quark, qi denotes the electric charge of quark i, and 

91 = 42' This W(3)-symmetric form is scaled to give the correct A moment. 

l-he predictions of the standard broken-SU(3) model are obtained from 

this limit by enhancing the contributions of the nonstrange quarks by a factor 

which fits the proton moment, while leaving the strange quark contributions 

unchanged. 

u(1,2;3) = (2ql+2q2-q3)v(A) + (2q1Xl+2q2x2-q3X3)~(l/3)v(~)-~(A)) 

- (4ql-q3)u(A) + (4qlxl-q3x3){(l/3)u(~)~(A)} (15b) 

where xi is defined to be 1 if quark i is a nonstrange quark and zero if it is 

a strange quark and xl = x2. The symmetry breaking terms are all proportional 

to xi which vanishes for strange quarks. Thus the scaling of the strange 
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quark contribution to the moment remains unchanged. Equation (15b) can be 

rewritten 

u(1,2;3) = (2ql+2q2-q3W3)u(P) - 

- (2ql(l-xl) + 2q2(1-x2) - q3(1-x3)}11/3)~(p)-~(h)} 

= (4q1~3~(1/3~Y(P~-~4q1(l-xl~ - q3(1-x3)}(1/3k(p)v(A)) (15c) 

This is the conventional form in which the SU(3) symmetry breaking appears es 

a suppression of the strange quark contribution rather than an enhancement of 

the nonstrange contribution. The SU(3)-symmetric term is scaled to give the 

correct proton moment and the symmetry breaking terms are all proportional to 

(l-xi) which vanishes for nonstrange quarks. 

If the comparatively small discrepancy in the Z- moment is 

neglected, the predictions in the SU(3) symmetry limit shown in Table I are 

seen to fit the Z moments reasonably well and the nucleon moments very 

badly. The introduction of symmetry breaking fits the nucleons well, but at 

the price of a much stronger disagreement in the E sector. The C+ and E- 

moments are midway between the two predictions, but the large error on the E- 

moment allows a fit to either within two standard deviations. Furthermore, 

the discrepancy in the difference between the proton and Z+ moment remains and 

is nearly unaffected by the symmetry breaking. 

This paradox suggests that SU(3) symmetry breaking is not a simple 

phenomenon and goes beyond enhancing the magnetic moment of the nonstrange 

quarks relative to that of the strange quarks by the same factor in all 

hadrons. hbnstrange quark moments eeem to be quenched in strange hadrons43 

(or equivalently enhanced in nonstrange hadrons), perhaps by {ion 

exchange. 47,48 However, the results tabulated in Table I show e very large 

enhancement of about 50% needed to fit the nucleon data, with no enhancement 
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required for the Z's. This suggests that all SU(3) breaking comes from a new 

dynamical mechanism like pion exchange, described by a two-body operator 

enhancing the nonstrange contributions mainly in the nucleon, with no 

additional breaking from the quark mass difference. This is difficult to 

believe; yet it corresponds exactly to the model described above for high 

energy scattering. The common feature in the total cross section and magnetic 

moment data that the nonstrange quarks break the SU(3) symmetry rather than 

the strange quarks may be significant. 

This point motivated a "two-component" model 46 with one fully W(3)- 

symmetric component given by eq. (9a) and the second component breaking SU(3) 

with a norradditive enhancement of the contributions of the nonstrange quarks 

by an ad hoc factor chosen to fit the nucleon moments 1+(1/4)N , where N is 

the number of additional nonstrange quarks in the baryon; i.e. N = 0,l and 2 

in the E, C and nucleon respectively. 

~(1,2;3) = (2ql+2q2-q3)u(A) + 

+ c2qlxl(X2+x3) + zq2x2(X3+Xl)-q3X3(X1+X2)}(U(A)/4} 

= (4ql-q3)u(A) + f 2q1x1(x1+x3)-q3x3x1){u(")/2) (16) 

The simultaneous breaking of SU(3) symmetry and additivity is evident in this 

relation, since the symmetry-breaking terms all contain two-quark products 

xixja This contrasts with eq. (9b) where all symmetry breaking terms are 

linear in the xi's. The predictions of this model are listed in Table I as 

"Two Comp. Broken SU(3)." 

The empirical formula (16) has no theoretical basis. Its 

superiority over the standard model which also has only one SU(3)-breaking 

parameter shows that the data are parametrized better by non-additive rather 
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than additive enhancement of the nonstrange quark contribution. The factor 

(l/4) is chosen to fit the well-known approximate enhancement factor of 312 

for the nucleon. This corresponds in the standard model to a quark mass ratio 

of 312. With parameters fixed in both models by fitting the nucleon and A, 

the significant test comes in the E moments. The additive standard model (9b) 

predicts the same nonstrange enhancement in all baryons and gives the same 

enhancement in the Z as in the nucleon in disagreement with experiment. The 

data show that the nonstrange enhancement needed for the C is roughly half 

that needed for the nucleon, which agrees with the prediction of the non- 

additive twcrcomponent model, eq. (16). 

Models for hadron structure and dynamics must eventually describe 

all properties including masses, magnetic moments and scattering cross 

sections. The standard broken-SU(3) model predicts the A magnetic moment from 

the protonmoment and hadron mass differences. This clue to hadron structure 

should not be easily discarded in correcting the mbdel to fit other hyperon 

moments. It is interesting and puzzling that both the magnetic moments and 

the total cross sections are fit reasonably well by a two-component 

description in which both additivity and SU(3) symmetry are broken only by a 

second component which enhances nonstrange contributions. Unfortunately there 

is no simple relation between the two "second components" in Eqs. (13) and 

(16). Further experimental work in hyperon physics may help to clarify these 

paradoxes. A model which explains why strange quarks seem to have a simpler 

behavior than nonstrange quarks would be very interesting. 

IV. Problems of the Constituent Quark Model for Multiquark States 

Models with only quark degrees of freedom and effective interactions 

are analogous to conventional atomic models with only electrons and nuclei and 
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a Coulomb interaction. But the gluon of non-Abelian QCD with its color charge 

and nonlinear self coupling is very different from the neutral photon. The 

color current carried by the gluon field plays an essential role in ensuring 

local conservation of color charge and local gauge invariance. 

The charge of an electron cannot be changed by photon emission nor 

shielded by the surrounding cloud of virtual photons. Charge exchange does 

not occur between electrons and nuclei in atoms. Maxwell’s equations are 

linear and the lines of force from a point charge radiate istropically in all 

directions as shown in Fig. 5a. An additive static Coulomb interaction 

proportional to gaugeinvariant c-number charges and uniquely determined by 

the positions and charges of all particles is adequate for atomic physics. 

The contribution from the Coulomb field of a nucleus to the force on an atomic 

electron is independent of the positions of the other electrons. All effects 

of screening of the nuclear coulomb field are included by simply adding the 

coulomb fields of all charged particles. 

The color charge of a quark is changed by gluon emission and 

shielded by virtual gluons. Color exchange occurs in interacting multiquark 

systems and depends upon gluon dynamics. The color charge of a quark is a 

gauge-dependent dynamical variable subject to quantum fluctuations. A quark- 

antiquark pair st two different space points cannot be in a color singlet 

state in all gauges. A local gauge transformation at the position of the 

quark changes its color without changing the color of the antiquark. The QCD 

field equations are nonlinear and the lines of color force are confined to 

strings or flux tubes as shown in Fig. Sb. The forces on a quark due to its 

interactions with two other quarks at different space points are not additive, 

because of the nonlinear couplings in the gluon field between them. The color 

energy of a given configuration is not completely determined by the locations 
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and color charges of the constituent quarks. It also depends u$on the 

configuration of the strings or flux tubes connecting these constituents. 

Consider a multiquark system containing two quarks and an antiquark 

as shown in Figs. 6a and 6b. A flux tube may connect the antiquark with 

either quark while another flux tube connects the remaining quark to the rest 

of the system. The force on the antiquark depends not only on the positions 

of all other constituents, but also on whether its flux tube connects it to 

one quark or the other as shown in Figs. 6. The dynamics of the gluon field 

may cause the flux tube to jump back and forth between the two 

configurations. An adequate description of these dynamics may not be possible 

in a model with only quarks and effective static interactions and no flux 

tubes. Greenberg and 'dieterinta49 have argued that the string degrees of 

freedom must be included in any phenomenological model describing the long 

range forces in multiquark systems. 

A potential model with colored quarks interacting vie a 

phenomenologfcal colorexchange force motivated by onegluolrexchange was 

first introduced before QCD to explain the saturation of interquark forces in 

hadrons and the relation between meson and baryon spectra. 23 Only global 

color symmetry was assumed, with massive gluons giving a short-range Yukawa 

interaction and no gauge theory nor confinement. This model was later 

connected with QCD by hand-waving arguments 10 without noting the inconsistency 

introduced by the additional requirement of local gauge invariance and color 

charge conservation in a constituent colored quark model with no explicit 

description of the gluon degrees of freedom. 

This inconsistency can be seen9 by spplying a local gauge 

transformation to a colorsinglet quark-antiquark wave function, 
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’ a 
1> - 1 ipq,(Y) (17) 

where x and xare two different space points and ais a color index. The 

state i- 1> is manifestly a color singlet under a global SU(3) color 

transformation. 

We now apply a local SU(3) color gauge transformation which acts 

only et the point Land not at the point Land is described by a unitary 

matrix Uab in color space chosen to have all its diagonal elements vanish, 

where 

l> + 1 Uab~,(xhbW = (8> 
ab 

U -0 . 
aa 

The state 18> is a pure octet under global SU(3) color and has no singlet 

component. Since all physical hadron states in QCD are assumed to be color 

singlets and color octet states do not exist, an allowed local guage 

transformation (18) which transforms the color singlet state II> into the 

color octet state (8> indicates an inconsistency with local gauge invariance. 

One might try to avoid this inconsistency by choosing e particular 

gauge before using the wave function (17). However the following physical 

argument suggests that the inconsistency results from the neglect of the role 

of the gluon current in ensuring local conservation of color and probably 

cannot be eliminated by choosing an appropriate gauge. The global color 

singlet wave function /l> has a quark and an antiquark at two different space 

points with instantaneously correlated color fluctuations. The quark and 

antiquark each have equal probabilities of being red, blue or green, but the 

antiquark must be green when the quark is green. In a complete QCD 
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description color is locally conserved and is exchanged between the quark and 

antiquark only via gluon exchange. The wave function 11) must have e "string" 

of gluon current connecting the points zand to conserve color and preserve 

local gauge invariance. This difficulty does not arise in abelian QED with 

neutral photons where electric charge is trivially conserved in photon 

exchange. 

We can now see the implications of this inconsistency for the 

colored constituent quark model which disregards the contribution of the gluon 

field to the color current. The model fails consistently in cases where 

localized color densities occur in the quark sector and gluon currents 

necessary for current conservation must introduce additional dynamic effects 

like screening. All phenomenological successes of the model occur when color 

and space are separated; the failures occur when they are not. The model 

succeeds in the quark-antiquark and three-quark systems where the meson and 

baryon wave functions factorize into a color factor and factor depending upon 

all other degrees of freedom. Color completely separates from space and all 

dynamics are described by a color-independent effective interaction. The 

color degree of freedom enters only in two ways: 

1. The allowed states for three-quark baryons are required to be 

symmetric in the other degrees of freedom in accordance with Fermi Statistics 

for colored quarks in a color singlet state.21 

2. A color factor related to the eigenvalue of a color SU(3) 

Casimir operator appears in relating quark-quark interactions in baryons to 

quark-antiquark interactions in mesons. 23 

These successes suggest that whenever color and space factorize the 

inconsistency (18) is unimportant and the dynamics of the gluonic degrees of 

freedom can either be neglected or somehow absorbed into an effective 

constituent quark wave function without gluons. This occurs rigorously when 
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x=.Y and there is no string or flux tube because all the quarks are et the - 

same point. The transformation (16) is then not allowed and the state II> 

remains a color singlet under all gauge transformations. The effective 

constituent quark picture might still hold for a wave function which includes 

terms with x= z and where color and space factorize, so that all the color 

transformation properties are determined by the portion of the wave function 

with x= Lend there are no correlations between color and space. 

The model has failed when wave functions without factorization of 

color and space are used to describe multiquark systems and correlation 

between color and space play an essential role; e.g. in "color chemistry" 

predictions of unobserved "baryonium" states with color-space correlations 31 

and the calculation of long range Van der Waals forces between separated 

hadrons1~8~10 arising from the admixture into the two-hadron wave function of 

states describing spatially separated color-octet pairs coupled to an overall 

color singlet. Such correlations are not gauge invariant in a model which 

considers only quark degrees of freedom. In QCD with confinement any local 

color-octet density in the quark sector is screened by gluons and the 

oversimplified constituent quark picture which does not include gluon dynamics 

cannot be valid. 

The predictions of exotic multiquark hadrons bound by color 

hyperfine interactions 49,so with color-spin correlations but no color-space 

correlations have not yet conclusively succeeded or failed. No such 

multiquark states have yet been convincingly identified, and further 

experimental tests are of greet interest. 51 The four-quark model for scalar 

mesons49-52 bound by hyperfine interactions explains properties of the low- 

lying scalar mesons 6 and S* which are otherwise very mysterious. A zero- 

range hyperfine interaction which acts only between a pair of quarks at the 
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same point produces bound states analogous to the deuteron with two quark- 

antiquark clusters separated by a distance of several cluster radii.52 These 

states can be described as two color-singlet clusters, bound by an effective 

short-range potential obtained from a hyperfine interaction, with no 

unphysical color-space correlations. 

This picture might be test by experiments producing the 6 and S* on 

nuclear targets. The reaction 

0 
K-+p l A+M (19) 

where M" is a neutral meson should have an A dependence when the proton is 

bound in a nucleus which depends on the size of the meson MO. If the 6 and S" 

are large four-quark states they should be absorbed much more strongly in a 

nuclear target than qi states like PO, w, 0, f, A2 and f' which should be 

copiously produced in the same reactions. Studying the nn spectrum in such 

reactions would enable direct comparison of the A-dependence of 6 and A2 

production, while the nn spectrum would compare S* production with p" and f0 

production. 

One might even expect that stripping reactions analogous to (1) 

would occur between a deuceron-like S* and 6 and a nucleus 

(6',S*) + (Z,A) + A((z,A) + 6 

(dO,S*) + (Z,A) + ,(Z-l,A) + K+ (2Ob) 

where A(Z,A) denotes the hypernucleus with charge Z and baryon number A. 

Comparing the reactions (19) and (20) might lead to production of hypernuclei 

with double strangeness. 
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K- + (Z,A) + (d',S*) + A(Z-l,A) + Ah(Z-l,A) + K" (21=) 

K- + (Z,A) + (6O,S*) + ,(Z-l,A) * ,,(Z-2,A) + K+ . (21b) 

We now use the string picture to see the role of gluon dynamics in 

more detail. The original global SU(3) potential mode123 takes a two-body 

potential, introduces a color factor appropriate for a one-gluolrexchange 

Yukawa interaction and applies it everywhere to multiquark systems. This is 

clearly unjustified in a gauge theory. However the potential model has a 

number of interesting properties, of which some can be expected to hold in a 

correct description and others to break down completely. 

Tbe potential used has the form8 

HI = Fi’Fj V+, - xjl) (22) 

where Fi denotes the eight SU(3) color generators for the ith quark or 

antiquark. 

In the color-singlet quark-antiquark state used in meson 

spectroscopy the color coupling of a quark and an antiquark to a color singlet 

is unique and factors out. The interaction (22) can be made identical (by 

hand) to the credible effective two-body potential used in charmonium obtained 

from QCD considerations such as lattice gauge calculations. This picture has 

a string between the quark and antiquark as shown in Fig. 7a and the effective 

potential is obtained by summation over all string configurations. 

In the three-quark color singlet state used in baryon spectroscopy, 

described in Fig. 7b the color coupling is also unique and factors out. The 
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interaction given by Eq. (22) for this case has the correct asymptotic form 

for the case where two quarks are very close together as shown in Fig. i'c. 

The force between a color triplet quark and a point-like color antitriplet 

diquark is the same as the quark-antiquark force as expected from QCD. Thus 

this interaction may be taken as a crude approximation to the correct QCD 

description of baryon spectroscopy. 

For multiquark systems containing more than three constituents the 

asymptotic behavior of the interaction (22) for ststes describable as two 

separated point-like clusters egrees with the expectations from QCD. There is 

no strong force between two point-like color singlet clusters and the triplet- 

antitriplet force is identical to the quark-antiquark force. For more 

complicated spatial configurations the color couplings for an overall singlet 

state are no longer unique and factorization of color no longer occurs. The 

interaction (22) is a nontrivial matrix in color space 1,23 with matrix 

elements depending upon the spatial degrees of freedom. It is no longer 

positive definite end can produce pathologies with confining potentials which 

always have "anticonfining" components. 8 Furthermore there is not even a one- 

to-one correspondence between the configurations allowed by QCD and those 

allowed by the model based on the interaction (22). 

The difficulty can be seen explicitly by examining the system of two 

quarks and two antiquarks located at the four corners of a tetrahedron. Some 

possible color couplings for the four particles are: 

I* = I ~W)l;W)l~l> (23=) 

IB> = 1 ~~3)~;(24)~)~> (23b) 

I I c> = t14)1;W)l11> (23~) 

I I D> - IW)8;W)811> Wd) 
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) ~{(12)3*;(34)3~1> E> = (23e) 

F> = )((12)6;(34)6*11> Wf) 

where particles 1 and 2 are quarks and 3 and 4 are antiquarks and 

I{(ij)n;(k~+}~> denotes a color singlet state with particles Land 1_ 

coupled to the representation Eof W(3) color and particles Land m coupled 

to the representation &*. 

In a description with strings or flux tubes each of the six 

configurations (23) is described by drawing strings connecting the four 

particles in different ways. Figs. 8a, 8b and 8c show the configurations for 

the states IA>, IC> and [E> respectively. The wave function 

/{(ij)n;(km)n,Il> denotes configurations with strings joining the pairs of 

particles (ij) and (km) and additional strings joining these two strings when 

the pairs (ij) and (km) are not color singlets. Each of these configurations 

is linearly independent of the other five. This can be seen, for example, by 

noting that the state 10 described by Fig. 8a has flux tubes along the edges 

of the tetrahedron joining particles 1 and 3 and joining particles 2 and 4 and 

no flux elsewhere, while the four states (4c-4f) have no flux along the edges 

(13) and (24) and all their flux tubes elsewhere. Thus the state IA> cannot 

be expressed as a liner combination of these four states. The quark 

description with the interaction (22) has only two independent color 

couplings. 1,23 The states (23) are linearly dependent in this description and 

span a Hilbert space of only two dimensfons in the color degree of freedom. 

The state IA) for example is a linear combination of the states IC> and ID> or 

of the states IE> and IF>. Thus there is no simple way to eliminst‘e the QCD 

strings to obtain an effective interaction of the form (3). Essential 

information is lost in using a two-dimensional Hilbert space for string 

dynamics whose description require a space of at least six dimensions. 
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The quark-antiquark and three-quark systems have unique color 

couplings and simple flux tube configurations shown in Figs. 7a and 7b, which 

can probably be replaced by an effective potential. Other multiquark systems 

no longer have a unique color coupling and several flux tube configurations 

are equally probable as shown in Figs. 8. For these cases the dynamics of 

flux tube jumping between these configurations cannot be properly included in 

a constituent quark description. 9 

In limiting cases where one string configuration is dominant the 

interaction (22) might describe average static properties with the information 

about the locations of strings contained in the color coupling factors. 

However, for calculating forces between hadrons or properties of multiquark 

matter many string configurations of equal Importance arise and any realistic 

wave function must describe the quantum fluctuations in which strings jump 

from one configuration to another. There does not seam to be any hope of 

describing this physics with an interaction of the type (22) or any other 

model (e.g. bag models) which does not explicitly introduce the dynamics and 

topology of flux tubes or strings. 

Another view of this difficulty is seen from comparison with the 

Abelian case. The interaction (22) also describes the four-body system of two 

protons and two electrons if Fi is the electric charge of particle Land 

V(lXi - Xjl ) is the coulomb interaction. If particles 1 and 2 are protons and 

particles 3 and 4 are electrons, the interaction (22) between proton 1 and 

electron 3 is always the same coulomb interaction independent of the positions 

of the other particles and of whether or not proton 1 and electron 4 are bound 

in a hydrogen atom. The coulomb fields of the four particles are simply 

additive. 
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In the nonabelian case this additfvity of the two-body forces 

appears in the interaction (22) but not in QCD. The force between quark 1 and 

and antiquark 3 as given by interactions (3) depends only upon the positions 

and color couplings of the two quarks and is independent of the positions of 

the other particles. But in QCD the force also depends upon how the strings 

are drawn to the other particles. 

It is also instructive to examine the four-body system for the case 

of a confining potential, such as a harmonic oscillator 

V(x -x ) - Vo(x,-xj) 2 
i j 

. Wa) 

Then 

5 FT.,; “~(x,x~)~ = 

(Y.;+x;) + Vo 1 1 Fa ‘, . 1 Fa ; 
ai i ’ j j j . (24b) 

For any color singlet state (or neutral state in the abelian case) the first 

term on the right hand side of Eq. (24b) vanishes, by virtue of the identity 

(6a) for any color singlet hadron. 

For the two-proton-two-electron system discussed above, with only 

one value of a and FT denoting the electric charge of I, the interaction (24b) 

is seen to depend only on the distance between the center of mass of the two 

protons and the center of mass of the two electrons. Moving the two +tons 

to infinity in opposite directions does not change the interaction if the 

center of mass of the two is held fixed. Thus although the interaction (24) 

is clearly confining for the twpbody system, the confinement is lost 

completely in the abelian case for the four-body system. Furthermore, there 

are extremely pathological long-range forces. A bound twebody system (a 
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harmonic hydrogen atom) on the earth can be broken up by moving the other 

proton and electron even when they are very far away; e.g. beyond the moon. 

This peculiar behavior results from the fact that the interaction 

(24) is confining only between a pair of particles of opposite charge; i.e. 

for a quark-antiquark pair in a color singlet state or a quark-quark pair in a 

color antitriplet state. For other charge or color configurations, the 

expression is not positive definite and the potential is "anticonfining" and 

becomes negatively infinite at large distances. The total interaction is seen 

from Eq. (24b) to be positive definite for color singlet states and unbounded 

from below for all other configurations.* 

This discussion reveals an important difference between single- 

hadron and multiquark states. The interaction (22) seems reasonable for meson 

spectroscopy, even though its remarkable success in nonrelativistic light 

quark spectroscopy still remains to be explained. For multiquark spectroscopy 

the interaction (22) correctly describes the absence of strong forces between 

separated color singlet clusters 23 but is clearly inadequate for finer details 

like the treatment of hadron-hadron interactions, 36 multiquark bound states 

with nontrivial spatial dependence8 31 and quark matter.53 The dynamics of the 

gluonic degrees of freedom and the gluon color current must be introduced 

explicitly to describe screening phenomena and keep local color conservation 

and gauge invariance.54 

This talk is an updated version of a previous talk (unpublished) 

given at the University of Washington Summer Institute on Quantum 

Chromodynamics and Quarks, Seattle, Washington, August 1982. It is a pleasure 

to thank the organizers of the Seattle Institute, Gerald A. Miller and 

Lawrence Wilets for the opportunity to have stimulating and clarifying 

discussions which significantly improved the final version of this talk. 
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